Diego De La Hoz 21 Jan. 2016 TA's: Andy Gray Jake Easterling Ralph F. Leyva

Instructors:

Dr. A Antonio Arroyo Dr. Eric M. Schwartz

University of Florida Department of Electrical and Computer Engineering EEL 4665/5666 Intelligent Machines Design Laboratory

Informal Proposal

In short, the project consists of having two autonomous robots. Robot A will mimic a daily automotive that would drive around until it 'breaks down.' Once it breaks down, Robot A would send a signal to Robot B signaling its need of towing service. When Robot B receives such signal, he would then proceed to Robot's A location for assistance. Upon arrival, Robot B would tow Robot A to a specified destination.

Below is a list of possible sensors and sensors types that would help the robot accomplish phase I goals: obstacle avoidance and robot motion. Also listed, are the future hardware that would be used to accomplish phase II of the project.

Sensors

- Camera:
 - o Raspberry Pi Camera
 - o PS3 Eye Camera
 - o Logitech HD Webcam
- Proximity sensor
 - o IR Sensor
 - o CDS- Light Intensity

Actuators

- Two motors
 - o DC Brushed with encoder
 - o DC Brushless with encoder
- Dual motor controllers compatible with motors
- A caster

Behaviors in detail

- Robot A (Broken-down robot)
 - o Able to move and avoid obstacles through an environment
 - o Able to send a signal to Robot B (Towing robot) when it needs towing
 - o Future: Able to receive a signal from Robot B when it arrives to towing dock
 - o Future: Able to follow a path given by the god-camera

- Robot B (Towing robot)
 - o Able to identify the position or receive the pixel location from the god-camera of Robot A
 - o Able to move and avoid obstacle through an environment
 - o Able to 'tow', attached to Robot A in order to tow to desired location
 - Future: Able to find the best path/ route to reach Robot A based on object recognition from the god-camera

Things to explore:

- Communication between devices: Robot A to Robot B, Robot B to god-camera
- Body material
- Body design

Timeline

The timeline is divided into two phases: phase I deals mainly with obstacle avoidance, motor actuation, and initial software, whereas phase II deals with visual recognition and final project features.

Projects	<u>Comments</u>	<u>January</u>	<u>February</u>	March	<u>April</u>
IMDL Robot					
Hardware Research Phase I	Sensors: Visual, Tactile, Movement,	11 th -25 th			
Budget Analysis	Estimate Cost of Final Robots	22 th			
Buy Equipment Phase I	Equipment for Phase I	22 th			
Software Implementation Phase I	Obstacle Avoidance, Motor Actuation	25 th -	8 th		
Hardware Research Phase II	Sensors: Special Sensor, Visual, Networking		1st-8th		
Buy Equipment Phase II	Final Purchase		8 th		
Hardware Implementation Phase I	Obstacle Avoidance, Motor Actuation, Body		1 st -15 th		
Testing I	Obstacle, Motors' Performance		15 th -22 nd		
Software Implementation Phase II	Visual Recognition, Communication, Path		29 th -	14 th	
Hardware Implementation Phase I	Effective Components Location			14 th -21 st	
Testing II	Location of Object, Possible Path Recognition			21 st -	11 th
Re-assess the course of the project.	Assessment, Objective Met				11 th -25 th